

CORE CURRICULUM

Core Curriculum

The Core Curriculum forms the center of NYU Shanghai's globally-oriented liberal arts and sciences education. Through Core courses, students deepen their intellectual engagement with diverse perspectives from the past and present; they gain increased awareness of distinct disciplinary approaches to problem-posing and analysis; and they develop skills to ethically and effectively respond to global challenges.

Core Curriculum Components

Core Component	Required Courses
Social and Cultural Foundations	Global Perspectives on Society (4 credits)
	Perspectives on the Humanities (4 credits) (also fulfills Writing)
	Interdisciplinary Perspectives on China (2 courses/8 credits total)
Writing	Writing as Inquiry (4 credits)
	Perspectives on the Humanities (4 credits) (also fulfills Social and Cultural Foundations)
Language	Chinese (through Intermediate II or equivalent competency)
	or
	English for Academic Purposes (8 credits in a two-semester course sequence or equivalent competency)
Mathematics	Mathematics course (4 credits)
Science	Experimental Discovery in the Natural World course (4 credits)
	Science, Technology and Society course (4 credits)
Algorithmic Thinking	Algorithmic Thinking course (4 credits)

Social and Cultural Foundations

Courses in the Social and Cultural Foundations sequence will provide students with a thematic framework within which to study influential works of diverse cultures, from the beginnings of history to the present, and from global and interdisciplinary perspectives. Students will reflect on fundamental and enduring questions about what it means to be human and how we as individuals live in society. These courses will teach students to take a global perspective as they read and interpret great works and ideas of the past and present; to ask critical questions, find unstated assumptions, and assess evidence presented in empirical and theoretical scholarship; to deepen their understanding of the history and development of contemporary China; and to communicate complex ideas with clarity.

The Social and Cultural Foundations component includes four required courses:

- A survey course called *Global Perspectives on Society*
- A writing course called *Perspectives on the Humanities*
- Two courses from the category *Interdisciplinary Perspectives on China*

Global Perspectives on Society (GPS)

In this course, we will explore a set of timeless questions about how society is, or should be, organized, based on close examinations of diverse thinkers and writers from different times and different cultures. The questions raised in this course will engage the moral, social, cultural, and political foundations of human relationships, the principles according to which people assemble into societies of different scales, and the bases for interaction among societies in a world of accelerating interdependence. By engaging texts that explore these questions from multiple perspectives, students reflect on several overarching issues, including how different societies have organized their economic and political institutions, how those societies fashion both shared identities and hierarchies of difference, how people experience themselves as "individuals" or as members of a collectivity, how they experience both time and space, and how they engage with human and non-human others both locally and globally. Over the semester, students develop skills that are central to a liberal arts education, including reading carefully and thoughtfully, considering questions from more than one perspective, participating in respectful and serious intellectual explorations of difficult topics, evaluating evidence and arguments, and developing methods of communication that make effective and appropriate use of the ideas of others as they present the students' own ideas to different audiences and through different media. Each week, students will meet twice as an entire class for lectures and once in smaller discussion sections led by one of New York University Shanghai's Global Perspectives on Society Postdoctoral Fellows.

Perspectives on the Humanities (PoH)

Perspectives on the Humanities is a content-based writing seminar, which introduces students to the questions asked and methods used by a variety of disciplines in the humanities, including philosophy, history, and literature. In the fall of their second year at NYU Shanghai, students choose from a variety of *Perspectives on the Humanities* topics. *Perspectives on the Humanities* is also designed to reinforce and advance the writing and thinking skills learned in the first-year *Writing as Inquiry* workshop. In addition to satisfying one Social and Cultural Foundations requirement, this course satisfies one of two writing requirements (see Writing).

Interdisciplinary Perspectives on China (IPC)

By completing two *Interdisciplinary Perspectives on China* courses, students will be able to identify basic dimensions of China's current and historical contexts, and they will be able to combine this knowledge with disciplinary theory to analyze past and present issues confronting Chinese society. Through their ability to identify important dimensions of Chinese culture and society and their familiarity with relevant theoretical approaches, students will develop an analytically engaged perspective on their own immediate context in Shanghai and China, in all of its cultural richness, social diversity, and political and economic complexity.

Interdisciplinary Perspectives on China courses cover a wide range of disciplinary and interdisciplinary approaches. They include history, philosophy, culture, art, and literature disciplines that use critical methods and primarily take a comparative and historical approach. They may also engage in both qualitative and quantitative analyses, using a range of analytical, interpretive, and experimental tools from anthropology, economics, sociology, political science, and psychology. *Interdisciplinary Perspectives on China* courses may be taken at any point in a student's undergraduate experience.

Interdisciplinary Perspectives on China Courses

Code	Title	Credits
ECON-SHU 221	China's Financial System	4
ECON-SHU 238	History of Modern Economic Growth: Exploring China From a Comparative Perspective	4
ECON-SHU 239	China's Economic Transition	4
GCHN-SHU 101	Introduction to Chinese Civilization	4
GCHN-SHU 102	History of Modern China Since 1840	4
GCHN-SHU 108	THE WORLD OF YUNNAN: Culture, History, and Life Along China's Southwestern Borderlands	4
GCHN-SHU 110	The Concept of China	4
GCHN-SHU 111	Shanghai Stories	4
GCHN-SHU 112	China Stories: Traditions and Transformations	4
GCHN-SHU 123	Contemporary Chinese Political Thought	4
GCHN-SHU 126	The Media in China	4
GCHN-SHU 133	Visualizing Global China	4
GCHN-SHU 145	Food in Chinese History	4
GCHN-SHU 156	History of Chinese Art	4
GCHN-SHU 164	The History of the Silk Road	4
GCHN-SHU 165	China and the Islamic World, c.600AD-Present	4
GCHN-SHU 182	Crimes, Detectives, and Justice in Chinese Culture	4
GCHN-SHU 185	China in Ten Soundtracks: The Sonic World of Modern Chinese Culture	4
GCHN-SHU 205	Hong Kong Cinema	4
GCHN-SHU 206	Woman in Modern China Through Literature and Media	4
GCHN-SHU 207	20th-century Chinese Writers in Global Context	4
GCHN-SHU 210	China Encounters the World	4
GCHN-SHU 211	Chinese Architecture	4
GCHN-SHU 220	History of Chinese Cinemas	4
GCHN-SHU 225	Cultural Translations: China and the West	4
GCHN-SHU 226	Queer China	4
GCHN-SHU 233	Foreign Societies in Classical Chinese Writing	4
GCHN-SHU 234	Dunhuang and Its Global Connections	4
GCHN-SHU 236	Immersive Narrative of Chinese Monuments	4
GCHN-SHU 243	China and the Environment	4
GCHN-SHU 246	Youth and Consumer Culture in China	4
GCHN-SHU 247	Religion and Society in China: Ghosts, Gods, Buddhas and Ancestors.	4
GCHN-SHU 248	Animals and Chinese Religion	4
GCHN-SHU 250	Geographies of China	4
GCHN-SHU 255	Eat, Pray, Ponder: Chinese Intellectual Culture through the Ages	4
GCHN-SHU 263	Voices from the Margin: Modern Chinese and Sinophone Writers	4
GCHN-SHU 264	Chinese Migrant and Diasporic Networks	4
GCHN-SHU 265	Women in China: From May 4th to Me Too & Beyond	4
GCHN-SHU 267	Good Death: China and Comparative Perspectives	4
GCHN-SHU 277	Medicine in China	4
GCHN-SHU 283	Reading and Viewing Modern China	4
GCHN-SHU 311	Global Connections: Shanghai	4
GCHN-SHU 318	Sex and Power in China, 1500–1950	4
GCHN-SHU 350	Tianxia: Traditional China and the World	4
GCHN-SHU 360	Reading Medieval China through Dunhuang Manuscripts	4
HIST-SHU 155	Chinese American History: From the California Gold Rush to the Cold War	4
HIST-SHU 188	Empires in World History	4
IMBX-SHU 263	Fashion Industry in East Asia	4
INTM-SHU 267	The Cultivated City	4
PHIL-SHU 105	Introduction to Chinese Philosophy	4
PHIL-SHU 110	Traditional Chinese Political and Legal Philosophy	4
SOCS-SHU 236	The Chinese Family	4
SOCS-SHU 237	China Meets Europe	4
SOCS-SHU 254	Ethnographies of Change in China	4
SOCS-SHU 270	Social Change in Contemporary China	4
SOCS-SHU 275	US-China Relations	4
SOCS-SHU 278	Finding Sociology in Chinese Cities: Shanghai and Hong Kong	4
SOCS-SHU 331	Politics in China	4
SOCS-SHU 341	Cross-Straight Relations	4
SOCS-SHU 370	China's Foreign Policy	4
SOCS-SHU 388	Chinese Social Stratification in Comparative Perspective	4

Writing

At NYU Shanghai, writing and academic inquiry lie at the core of a liberal arts education. The Writing Program plays a vital role in achieving this mission by offering two Core Curriculum writing courses (<https://shanghai.nyu.edu/content/core-writing-courses/>), Writing as Inquiry and Perspectives on the Humanities, along with a variety of creative writing (<https://shanghai.nyu.edu/academics/minors/creative-writing-courses-and-creative-writing-minor/>) and journalism courses.

In Writing as Inquiry, the first-year workshop, students read texts and respond by writing their own. In doing so, they add their critical perspectives to ongoing academic and public conversations. Students work to write sophisticated and cogent prose, and learn to effectively incorporate written texts in the development of their own arguments. Class discussions include strategies for every step of the writing process –from invention and organization to research and revision. In a workshop setting, students analyze the work of their peers and respond to feedback on their own writing. By the end of the course, students should be able to recognize rhetorical strategies and genre conventions, dissect difficult textual material, and build clear and convincing arguments that matter both within and beyond academic contexts.

Following this foundational course, students advance to Perspectives on the Humanities, a thematic seminar with writing, discussion and workshop components. This course fulfills the Social and Cultural Foundations requirement within the Core Curriculum. Building on the critical thinking and writing skills cultivated in Writing as Inquiry, it introduces students to multidisciplinary approaches within the humanities. In this course, students not only acquire a nuanced understanding of the subject matter, but also practice advanced techniques of close reading and analysis. Compared with Writing as Inquiry, students tackle longer, more complex texts often in diverse genres or media forms, explore a broader spectrum of disciplinary perspectives, and apply their acquired content knowledge to produce written work of greater depth and sophistication.

The habits, dispositions, and skills developed in the core writing courses are transferable across diverse communication contexts—academic, civic, business, personal, and creative. The ability to think critically and express ideas with clarity and nuance will serve students well in any future career path they choose.

Outstanding student writing from the two core writing courses is published each year in *The Hundred River Review* (<https://www.hundredriver.org/>).

Language

Language study is central to NYU's educational mission to develop well-rounded global citizens. Through language study, students gain the ability to operate effectively in multilingual and multicultural contexts. All NYU Shanghai students will be able to use English and Chinese for a range of communicative aims.

Chinese Language

Core Chinese language courses prepare students to develop the communicative skills and competencies that allow them to engage in interpersonal and intercultural exchanges in the target language. Students will develop a greater cultural awareness of the context in which they study.

Required courses or proficiencies for Chinese: Students are required to successfully complete the intermediate two level of Chinese, or to demonstrate an equivalent competency through a placement exam. They are encouraged to develop as much proficiency in Chinese as their major course of study allows. In the summer before the first year, students who did not attend a Chinese-medium high school will have their Chinese language level assessed and will be placed into the appropriate level course. The Chinese language program offers multiple modalities of instruction, including formal intensive coursework during Summer Sessions, online self-study, and co-curricular language coaching with immersion experiences. In order to study away, students must successfully complete Elementary Chinese II with a grade of C or better. To satisfy the language requirement, students must earn a grade of C or better in Intermediate Chinese II or equivalent. In addition, students may demonstrate equivalent proficiency by applying to take and scoring an 80 or higher on a placement exam.

Course	Title	Credits
CHIN-SHU 101	Elementary Chinese I	4
CHIN-SHU 102	Elementary Chinese II	4
CHIN-SHU 201 or CHIN-SHU 221	Intermediate Chinese I Chinese Immersion Program: Intermediate I	4
CHIN-SHU 202 or CHIN-SHU 222	Intermediate Chinese II Chinese Immersion Program: Intermediate II	4

English for Academic Purposes

Core English for Academic Purposes (EAP) courses prepare students who did not attend an English-medium high school to engage communicatively at the high level demanded by the university's liberal arts context.

Required courses or proficiencies for English: Chinese speakers who did not attend an English-medium high school are required to complete up to 8 credits of EAP in the first two years, following a two-semester course sequence from EAP 100 to EAP 101. Most students will complete

a four-credit EAP seminar in the fall term and an EAP 101 seminar in the spring term. A small number of students taking course sequences in the sciences will be eligible to take EAP 100 in the Spring semester of their first year. Students must successfully complete the two-course sequence before the end of their second year, prior to their study away semester. Students who demonstrate exceptionally strong competence on all learning outcomes as they complete EAP 100 may be recommended by faculty for exemption from EAP 101. Exemptions are rare and most students should expect to complete the full eight credits of EAP.

Course	Title	Credits
EAP-SHU 100	English for Academic Purposes I	4
EAP-SHU 101	English for Academic Purposes II	4

Mathematics

Math core courses are an initiation to the use of mathematics to model and understand natural phenomena. Students are expected to acquire basic computational skills and the understanding of foundational mathematical notions. In addition, students are exposed to proofs and logical operations in mathematics.

Students may fulfill their math requirement by taking *Precalculus* or *Great Ideas in Mathematics*, by taking other courses designated as fulfilling the Mathematics component, or by placing out of the requirement.

The relevant exam scores which may be used to fulfill the core curriculum mathematics requirement are listed below. No corresponding credit is awarded and test scores cannot be used to fulfill a prerequisite for an upper-level course in that area.

Mathematics Courses & Relevant Exam Scores

Code	Title	Credits
HIST-SHU 157	A Global History of Mathematics	4
MATH-SHU 9	Precalculus	4
MATH-SHU 10	Quantitative Reasoning: Great Ideas in Mathematics	4

AP Examination	Score	Core Requirement Satisfied
AP Calculus AB or BC	Score of 4 or higher	Mathematics
IB Mathematics HL	Score of 6 or higher	Mathematics
A Level Mathematics	Score of B or higher	Mathematics
NYU Shanghai Placement into Calculus		Mathematics

Science

Scientific knowledge and inquiry are central to human society, and science and technology play an increasingly important role in our lives. At the heart of the natural sciences is a quest to understand the universe, the biosphere, and who we humans are. The special feature of science is that its hypotheses can be tested under controlled conditions by appealing to evidence external to the inquirer. Thus, science provides a consistent framework for proposing ideas and testing potential answers to these questions. NYU Shanghai students will become conversant with the fundamental concepts and applications, intellectual methods and analytical techniques that define modern science.

The science component has two required courses:

1. One lab-based course to fulfill Experimental Discovery in the Natural World;
2. One non-laboratory-based course to fulfill Science, Technology, and Society.

In Experimental Discovery in the Natural World (ED) courses, students are introduced to the foundations and frontiers of scientific investigation in the physical and life sciences. Through the laboratory experience, students develop the ability to use experimental methods to understand the world.

In *Science, Technology, and Society* (STS) courses, students study science and/or technology in their wider context. This may involve thinking about science and technology from a different disciplinary perspective—philosophical, historical, sociological, economic or political, for example. But it may also involve taking science and technology themselves as the focus of scientific investigation, as for example in a course that focuses on the limits of statistical methods, or on formal approaches to the social structure of science. Alternatively, STS courses may examine a single topic from a range of perspectives that include, but are not limited to, scientific and technological perspectives, such as in a course that focuses on environmental politics, global health, bioinformatics, or smart cities. What unites STS courses is a reflective attitude to the nature of science and technology, and taking science and technology themselves as the primary objects of study.

ED and STS courses cover a wide range of disciplinary and interdisciplinary approaches; these courses may be taken at any point in a student's undergraduate experience.

Students who pursue degrees in some STEM disciplines¹ will complete the Science core requirements by fulfilling the requirements in those majors.

The relevant exam scores which may be used to fulfill the Core Curriculum *Experimental Discovery in the Natural World* requirement are listed below. No corresponding credit is awarded and test scores cannot be used to fulfill a prerequisite for an upper-level course in that area.

Experimental Discovery in the Natural World Courses and Relevant Exams

Code	Title	Credits
BIOL-SHU 5	Nutrition, Fitness and Health	4
BIOL-SHU 21	Foundations of Biology I	3
BIOL-SHU 123	Foundations of Biology Lab	2
CCEX-SHU 1	Principles of Life-From Cells to Organisms	2
CCEX-SHU 3	Explore the Cell: from Gene to Protein	2
CCEX-SHU 115	Experiments in Food Science	4
CCEX-SHU 120	Biology for a Changing World	4
CCEX-SHU 122	Perception and the Brain	4
CCEX-SHU 136	Human Genetics: Genes in Human Health & Diseases	4
CCEX-SHU 137	Human Genetics: Genes in Human Health & Disease Lab	2
CCEX-SHU 170	While You Were Sleeping	4
CCEX-SHU 203	Energy and the Environment	4
CCEX-SHU 214	How Things Work	4
CENG-SHU 201	Digital Logic	4
CHEM-SHU 125	Foundations of Chemistry I	3
CHEM-SHU 127	Foundations of Chemistry I Lab	2

EENG-SHU 251	Circuits	4
INTM-SHU 130	Working with Electrons	4
INTM-SHU 222	Introduction to Robotics	4
INTM-SHU 244	Bio-Inspired Robot Systems	4
PHYS-SHU 11	General Physics I	3
PHYS-SHU 71	Foundations of Physics Lab I	2
PHYS-SHU 91	Foundations of Physics I Honors	3
PSYC-SHU 101	Introduction to Psychology	4

AP Examination	Score	Core Requirement Satisfied
A Level Psychology	Score of B or higher fulfills core; score of A fulfills core and course equivalency for PSYCH-SHU 101	Experimental Discovery (ED)
AP Psychology	Score of 4 or higher fulfills core; score of 5 fulfills core and course equivalency for PSYCH-SHU 101	Experimental Discovery (ED)
IB Psychology HL (Higher Level)	Score of 6 or higher fulfills core; score of 7 fulfills core and course equivalency for PSYCH-SHU 101	Experimental Discovery (ED)
AP Physics C- Mech or AP Physics C- E&M	Score of 4 or higher	Experimental Discovery (ED)
IB Biology HL, Chemistry HL, or Physics HL	Score of 6 or higher	Experimental Discovery (ED)
A Level Biology, Chemistry, or Physics	Score of B or higher	Experimental Discovery (ED)
AP Physics 1 & 2 (must have both), Chemistry, or Biology	Score of 4 or higher	Experimental Discovery (ED)

Science, Technology, and Society Courses

Code	Title	Credits
BIOL-SHU 30	Genetics	4
BIOL-SHU 261	Genomics and Bioinformatics	4
CCST-SHU 133	Water Energy Food Nexus	4
CCST-SHU 142	Environment Connections: Water, Waste, and Wellness	4
CENG-SHU 352	Emerging Technologies for Smart Cities	4
ECON-SHU 232	Blockchain, Cryptocurrency, and Money	4
GCHN-SHU 216	Psychology and Modernity in China	4
GCHN-SHU 243	China and the Environment	4
HIST-SHU 157	A Global History of Mathematics	4
HIST-SHU 205	History of Modern Medicine	4
HIST-SHU 225	The Global Space Age	4
HIST-SHU 239	New York: History of the City and its People	4
HIST-SHU 305	When Science Goes Wrong	4
HIST-SHU 310	The Birth of Psychology	4
HIST-SHU 330	Popular Culture and the Scientific Revolution	4
HUMN-SHU 110	What is Science and Technology Studies?	4

INTM-SHU 124	Emerging Technologies & Computational Arts	4
INTM-SHU 195	After Us: Post-human Media	4
INTM-SHU 294	History of Human Computer Interaction	4
MATH-SHU 5	Chance	4
NEUR-SHU 10	Free Will and the Brain	4
NEUR-SHU 130	Introduction to Linguistics: The Science of Human Language	4
NEUR-SHU 131	Neural Bases of Speech and Language	4
NEUR-SHU 132	Meaning	4
PHIL-SHU 90	Philosophy of Science	4
PHIL-SHU 91	Philosophy of Biology	4
PHIL-SHU 130	Philosophy of Technology: Thinking Machines	4
PHIL-SHU 230	Philosophy of Physics	4
PSYC-SHU 329	Parenting and Culture	4
PSYC-SHU 344	Psychology of Human-Machine Communication and Relationships	4
PSYC-SHU 360	Evolutionary Psychology	4
SOCS-SHU 135	Environment and Society	4
SOCS-SHU 170	Introduction to Global Health	4
SOCS-SHU 199	Global Transportation	4
SOCS-SHU 204	Environmental System Science	4
SOCS-SHU 208	Cities at Crossroads: Environmental Challenges and Opportunities in Cities	4
SOCS-SHU 224	Climate Change and Society	4
SOCS-SHU 244	Anthropology of Mental Illness	4
SOCS-SHU 289	From Soil to Society: Exploring Earth Systems and Human Factors	4
SOCS-SHU 306	Pestilence: Critical Perspectives in Global Health	4
SOCS-SHU 328	Sexuality in the Digital Age	4
SOCS-SHU 332	Global Mental Health	4
SOCS-SHU 333	Global Environmental Politics	4
SOCS-SHU 334	Legal Psychology	4

¹ Biology, Chemistry, Physics, Neural Science, Computer Systems Engineering, Electrical Systems, Engineering, Math, or Honors Math.

Algorithmic Thinking

In Algorithmic Thinking (AT) courses, students acquire an understanding of the nature of computation, by studying the formal or mathematical properties of computation, by applying the concrete forms computation has taken, either historically or in the present, or by learning how to program. Students also will learn to critically engage with computation, by studying at least one context in which computation is embedded, whether historical, social, political, philosophical, mathematical or creative.

AT courses cover a wide range of disciplinary and interdisciplinary approaches; the AT course may be taken at any point in a student's undergraduate experience.

The relevant exam scores which may be used to fulfill the Core Curriculum Algorithmic Thinking requirement are listed below. No corresponding credit is awarded.

Algorithmic Thinking Courses & Relevant Exams

Code	Title	Credits
BUSF-SHU 210	Business Analytics	4
CSCI-SHU 11	Introduction to Computer Programming	4
CSCI-SHU 101	Introduction to Computer and Data Science	4
ECON-SHU 301	Econometrics	4
INTM-SHU 101	Interaction Lab	4
INTM-SHU 103	Creative Coding Lab	4
INTM-SHU 204	Critical Data and Visualization	4
MATH-SHU 252	Numerical Analysis	4
PHIL-SHU 70	Logic	4
SOCS-SHU 190	Introduction to the Computational Social Science Methods	4

AP Examination	Score	Core Requirement Satisfied
AP Computer Science	Score of 4 or higher	Algorithmic Thinking
IB HL (Higher Level Computer Science)	Score of 6 or higher	Algorithmic Thinking
NYU Shanghai Placement into Introduction to Computer Science		Algorithmic Thinking

Core Curriculum Program Learning Outcomes

Critical Thinking

The ability to analyze, synthesize, and evaluate complex problems and arguments objectively using a wide range of methodologies.

Communication

The ability to communicate effectively in a range of written and spoken genres, using a variety of media, across a variety of disciplines.

Information Literacy

Possession of information literacy skills needed to access, evaluate, and utilize information effectively and ethically.

Algorithmic Thinking

Ability to understand and apply the underlying principles of computer programming, including input, output, variables, repetitive loops, and decision structures.

Scientific Literacy

The ability to apply scientific methods of inquiry, such as deductive and inductive methods to define problems, formulate testable hypotheses derived logically from alternative explanations, and design tests to evaluate these hypotheses.

Quantitative Literacy

The ability to recognize and interpret mathematical models, to use multiple mathematical methods to solve problems, and to understand how mathematical models are created to explain or predict phenomena.

Self-Directed Learning

Possession of independent learning skills that will enable the student to begin assignments and projects, to see them through until completion,

and to submit high-quality work reflective of careful preparation and review.

Global Perspective

A global perspective that reflects an understanding of and ability to engage with various social, ethical, and personal values in a cross-cultural environment.

Exam Scores At-A-Glance

The following exam scores may be used to fulfill Core Curriculum requirements. No corresponding credit is awarded and test scores cannot be used to fulfill a prerequisite for an upper-level course in that area.

Core curriculum requirement can be fulfilled by these exams (though no credit is given)

AP Examination	Score	Core Requirement Satisfied
AP Calculus AB or BC	Score of 4 or higher	Mathematics
IB Mathematics HL	Score of 6 or higher	Mathematics
A Level Mathematics	Score of B or higher	Mathematics
NYU Shanghai Placement into Calculus		Mathematics
AP Psychology	Score of 4 or higher fulfills core; score of 5 (ED) fulfills core and course equivalency for PSYCH-SHU 101	Experimental Discovery
IB Psychology HL (Higher Level)	Score of 6 or higher fulfills core; score of 7 (ED) fulfills core and course equivalency for PSYCH-SHU 101	Experimental Discovery
A Level Psychology	Score of B or higher fulfills core; score of A (ED) fulfills core and course equivalency for PSYCH-SHU 101	Experimental Discovery
AP Physics C- Mech OR AP Physics C- E&M	Score of 4 or higher	Experimental Discovery (ED)
AP Physics 1 & 2 (must have both) Chemistry, or Biology	Score of 4 or higher	Experimental Discovery (ED)
IB Biology HL, Chemistry HL, or Physics HL	Score of 6 or higher	Experimental Discovery (ED)
A Level Biology, Chemistry, or Physics	Score of B or higher	Experimental Discovery (ED)
AP Computer Science	Score of 4 or higher	Algorithmic Thinking (AT)
IB Computer Science HL	Score of 6 or higher	Algorithmic Thinking (AT)
NYU Shanghai Placement into Introduction to Computer Science		Algorithmic Thinking (AT)