CORE CURRICULUM

Core Curriculum

The Core Curriculum forms the center of NYU Shanghai's globallyoriented liberal arts and sciences education. Through Core courses, students deepen their intellectual engagement with diverse perspectives from the past and present; they gain increased awareness of distinct disciplinary approaches to problem-posing and analysis; and they develop skills to ethically and effectively respond to global challenges.

Core Curriculum Components

Core Component	Required Courses
Social and Cultural Foundations	Global Perspectives on Society (4 credits)
	Perspectives on the Humanities (4 credits) (also fulfills Writing)
	Interdisciplinary Perspectives on China (2 courses/8 credits total)
Writing	Writing as Inquiry (4 credits)
	Perspectives on the Humanities (4 credits) (also fulfills Social and Cultural Foundations)
Language	Chinese (through Intermediate II or equivalent competency)
	or
	English for Academic Purposes (8 credits in a two-semester course sequence or equivalent competency)
Mathematics	Mathematics course (4 credits)
Science	Experimental Discovery in the Natural World course (4 credits)
	Science, Technology and Society course (4 credits)
Algorithmic Thinking	Algorithmic Thinking course (4 credits)

Social and Cultural Foundations

Courses in the Social and Cultural Foundations sequence will provide students with a thematic framework within which to study influential works of diverse cultures, from the beginnings of history to the present, and from global and interdisciplinary perspectives. Students will reflect on fundamental and enduring questions about what it means to be human and how we as individuals live in society. These courses will teach students to take a global perspective as they read and interpret great works and ideas of the past and present; to ask critical questions, find unstated assumptions, and assess evidence presented in empirical and theoretical scholarship; to deepen their understanding of the history and development of contemporary China; and to communicate complex ideas with clarity.

The Social and Cultural Foundations component includes four required courses:

- A survey course called Global Perspectives on Society

- A writing course called Perspectives on the Humanities
- Two courses from the category Interdisciplinary Perspectives on China

Global Perspectives on Society (GPS)

In the survey course Global Perspectives on Society, students will engage in the comparative study of primary works of social thought from across the globe. The course addresses ways that writers in different times and cultures have sought to situate humans within the universe, and to promote ideal standards for human behavior. Each week, students will be expected to engage one or more central texts by an important thinker on a given topic. The expectation is that Global Perspectives on Society will be taken in the first semester of students' first year at NYU Shanghai.

Perspectives on the Humanities (PoH)

Perspectives on the Humanities is a content-based writing seminar, which introduces students to the questions asked and methods used by a variety of disciplines in the humanities, including philosophy, history, and literature. In the fall of their second year at NYU Shanghai, students choose from a variety of Perspectives on the Humanities topics. Perspectives on the Humanities is also designed to reinforce and advance the writing and thinking skills learned in the first-year Writing as Inquiry workshop. In addition to satisfying one Social and Cultural Foundations requirement, this course satisfies one of two writing requirements (see Writing).

Interdisciplinary Perspectives on China (IPC)

By completing two Interdisciplinary Perspectives on China courses, students will be able to identify basic dimensions of China's current and historical contexts, and they will be able to combine this knowledge with disciplinary theory to analyze past and present issues confronting Chinese society. Through their ability to identify important dimensions of Chinese culture and society and their familiarity with relevant theoretical approaches, students will develop an analytically engaged perspective on their own immediate context in Shanghai and China, in all of its cultural richness, social diversity, and political and economic complexity.

Interdisciplinary Perspectives on China courses cover a wide range of disciplinary and interdisciplinary approaches. They include history, philosophy, culture, art, and literature disciplines that use critical methods and primarily take a comparative and historical approach. They may also engage in both qualitative and quantitative analyses, using a range of analytical, interpretive, and experimental tools from anthropology, economics, sociology, political science, and psychology. Interdisciplinary Perspectives on China courses may be taken at any point in a student's undergraduate experience.

Interdisciplinary Perspectives on China Courses

Code	Title	Credits
ART-SHU 9077	Contemporary Art \& New Media in China	4
CCCF-SHU 110	Introduction to Shanghai Cinema Legacy and Contemporary Chinese Film/Media Industry	4
CCSF-SHU 123	Contemporary Chinese Political Thought	4
ECON-SHU 221	China's Financial System	4
ECON-SHU 238	History of Modern Economic Growth: Exploring	4
	China From a Comparative Perspective	4
ECON-SHU 239	China's Economic Transition	4
GCHN-SHU 101	Introduction to Chinese Civilization	4
GCHN-SHU 110	The Concept of China	4
GCHN-SHU 156	History of Chinese Art	4
GCHN-SHU 164	The History of the Silk Road	4
GCHN-SHU 165	China and the Islamic World, c.600AD-Present	4

GCHN-SHU 185	China in Ten Soundtracks: The Sonic World of Modern Chinese Culture	4
GCHN-SHU 205	Hong Kong Cinema	4
GCHN-SHU 207	20th-century Chinese Writers in Global Context	4
GCHN-SHU 208	Chinese Science Fictions	4
GCHN-SHU 211	Chinese Architecture	4
GCHN-SHU 225	Cultural (Mis)translations: China and the West	4
GCHN-SHU 226	Queer China	4
GCHN-SHU 232	From Qing to the Republic: Social Debates in China	4
GCHN-SHU 233	Foreign Societies in Classical Chinese Writing	4
GCHN-SHU 234	Dunhuang and Its Global Connections	4
GCHN-SHU 236	Immersive Narrative of Chinese Monuments	4
GCHN-SHU 243	China and the Environment	4
GCHN-SHU 246	Youth and Consumer Culture in China	4
GCHN-SHU 248	Animals and Chinese Religion	4
GCHN-SHU 250	Geographies of China	4
GCHN-SHU 252	20th-Century East Asia-U.S. Relations	4
GCHN-SHU 255	Eat, Pray, Ponder. Chinese Intellectual Culture through the Ages	4
GCHN-SHU 264	Chinese Migrant and Diasporic Networks	4
GCHN-SHU 265	Women in China: From May 4th to Me Too \& Beyond	4
GCHN-SHU 283	Reading and Viewing Modern China	4
GCHN-SHU 351	Buddhism, Nature and Technology in the Chinese World	4
HIST-SHU 145	Food in Chinese History	4
HIST-SHU 153	History of Modern China Since 1840	4
HIST-SHU 155	Chinese American History: From the California Gold Rush to the Cold War	4
HIST-SHU 179	History of Modern China in a Global Context	4
HIST-SHU 250	Tianxia: Traditional China and the World	4
HIST-SHU 312	China Encounters the World	4
HIST-SHU 313	China Goes Global: How China and the World Changed Each Other	4
HUMN-SHU 366	Shanghai Stories	4
INTM-SHU 267	The Cultivated City	4
LIT-SHU 226	History of Chinese Cinemas	4
MCC-SHU 9451	The Media in China	4
PHIL-SHU 105	Introduction to Chinese Philosophy	4
PHIL-SHU 110	Traditional Chinese Political and Legal Philosophy	4
RELS-SHU 9270	Religion and Society in China: Ghosts, Gods, Buddhas and Ancestors.	4
SCA-SHU 9634	Global Connections: Shanghai	4
SOCS-SHU 236	The Chinese Family	4
SOCS-SHU 254	Ethnographies of Change in China	4
SOCS-SHU 270	Social Change in Contemporary China	4
SOCS-SHU 275	US-China Relations	4
SOCS-SHU 278	Finding Sociology in Chinese Cities: Shanghai and Hong Kong	4
SOCS-SHU 331	Politics in China	4
SOCS-SHU 341	Cross-Strait Relations	4
SOCS-SHU 370	China's Foreign Policy	4

demonstrate equivalent proficiency by applying to take and scoring an 80 or higher on a placement exam.

Course	Title	Credits
CHIN-SHU 101	Elementary Chinese I	4
CHIN-SHU 102	Elementary Chinese II	4
CHIN-SHU 201	Intermediate Chinese I	4
CHIN-SHU 202	Intermediate Chinese II	4

English for Academic Purposes

Core English for Academic Purposes (EAP) courses prepare students who did not attend an English-medium high school to engage communicatively at the high level demanded by the university's liberal arts context.

Required courses or proficiencies for English: Chinese speakers who did not attend an English-medium high school are required to complete up to 8 credits of EAP in the first two years, following a two-semester course sequence from EAP 100 to EAP 101. EAP 100 must be completed in the first year. Most students will complete a four-credit EAP seminar in the fall term and an EAP 101 seminar in the spring term. A small number of students taking course sequences in the sciences will be eligible to take two two-credit EAP 100 seminars in the first year and to complete EAP 101 in the following year. Academic advisors will notify students if they are eligible for the two-credit seminar. Students must successfully complete EAP 101 before the end of their second year and before they study away. Students who demonstrate exceptionally strong competence on all learning outcomes as they complete EAP 100 may be recommended by faculty for exemption from EAP 101. Exemptions are rare and most students should expect to complete the full eight credits of EAP.

Course	Title	Credits
EAP-SHU 100	English for Academic Purposes I	4
EAP-SHU 101	English for Academic Purposes II	4

Mathematics

Math core courses are an initiation to the use of mathematics to model and understand natural phenomena. Students are expected to acquire basic computational skills and the understanding of foundational mathematical notions. In addition, students are exposed to proofs and logical operations in mathematics.

Students may fulfill their math requirement by taking Precalculus or Great Ideas in Mathematics, by taking other courses designated as fulfilling the Mathematics component, or by placing out of the requirement.

The relevant exam scores which may be used to fulfill the core curriculum mathematics requirement are listed below. No corresponding credit is awarded and test scores cannot be used to fulfill a prerequisite for an upper-level course in that area.

Mathematics Courses \& Relavant Exam Scores		
Code	Title	Credits
MATH-SHU 9	Precalculus	4
MATH-SHU 10	Quantitative Reasoning: Great Ideas in Mathematics	

AP Examination	Score	Core Requirement Satisfied
AP Calculus AB or BC	Score of 4 or higher	Mathematics
IB Mathematics HL	Score of 6 or higher	Mathematics
A Level Mathematics	Score of B or higher	Mathematics
NYU Shanghai Placement into Calculus	Mathematics	

Science

Scientific knowledge and inquiry are central to human society, and science and technology play an increasingly important role in our lives. At the heart of the natural sciences is a quest to understand the universe, the biosphere, and who we humans are. The special feature of science is that its hypotheses can be tested under controlled conditions by appealing to evidence external to the inquirer. Thus, science provides a consistent framework for proposing ideas and testing potential answers to these questions. NYU Shanghai students will become conversant with the fundamental concepts and applications, intellectual methods and analytical techniques that define modern science.

The science component has two required courses:

1. One lab-based course to fulfill Experimental Discovery in the Natural World;
2. One non-laboratory-based course to fulfill Science, Technology, and Society.

In Experimental Discovery in the Natural World (ED) courses, students are introduced to the foundations and frontiers of scientific investigation in the physical and life sciences. Through the laboratory experience, students develop the ability to use experimental methods to understand the world.

In Science, Technology, and Society (STS) courses, students study science and/or technology in their wider context. This may involve thinking about science and technology from a different disciplinary perspectivephilosophical, historical, sociological, economic or political, for example. But it may also involve taking science and technology themselves as the focus of scientific investigation, as for example in a course that focuses on the limits of statistical methods, or on formal approaches to the social structure of science. Alternatively, STS courses may examine a single topic from a range of perspectives that include, but are not limited to, scientific and technological perspectives, such as in a course that focuses on environmental politics, global health, bioinformatics, or smart cities. What unites STS courses is a reflective attitude to the nature of science and technology, and taking science and technology themselves as the primary objects of study.

ED and STS courses cover a wide range of disciplinary and interdisciplinary approaches; these courses may be taken at any point in a student's undergraduate experience.
Students who pursue degrees in some STEM disciplines ${ }^{1}$ will complete the Science core requirements by fulfilling the requirements in those majors.

The relevant exam scores which may be used to fulfill the Core Curriculum Experimental Discovery in the Natural World requirement are listed below. No corresponding credit is awarded and test scores cannot be used to fulfill a prerequisite for an upper-level course in that area.

Experimental Discovery in the Natural World Courses and Relevant Exams

Code	Title	Credits
BIOL-SHU 5	Nutrition, Fitness and Health	4
BIOL-SHU 21	Foundations of Biology I	3
BIOL-SHU 123	Foundations of Biology Lab	2
CCEX-SHU 1	Principles of Life-From Cells to Organisms	2
CCEX-SHU 3	Explore the Cell: from Gene to Protein	2
CCEX-SHU 115	Experiments in Food Science	4
CCEX-SHU 116	Where the City Meets the Sea: Studies in Coastal	4
	Urban Environments	
CCEX-SHU 120	Biology for a Changing World	4
CCEX-SHU 122	Perception and the Brain	4
CCEX-SHU 136	Human Genetics: Genes in Human Health \&	4
	Disease	2
CCEX-SHU 137	Human Genetics: Genes in Human Health \&	2
	Disease Lab	4
CCEX-SHU 170	While You Were Sleeping	4
CCEX-SHU 203	Energy and the Environment	4
CCEX-SHU 214	How Things Work	4
CENG-SHU 201	Digital Logic	3
CHEM-SHU 125	Foundations of Chemistry I	2
CHEM-SHU 127	Foundations of Chemistry I Lab	4
EENG-SHU 251	Circuits	4
INTM-SHU 130	Working with Electrons	4
INTM-SHU 222	Introduction to Robotics	4
INTM-SHU 244	Bio-Inspired Robot Systems	4
NEUR-SHU 160	Introduction to Brain and Behavior	3
PHYS-SHU 11	General Physics I	2
PHYS-SHU 71	Foundations of Physics Lab I	3
PHYS-SHU 91	Foundations of Physics I Honors	4
PSYC-SHU 101	Introduction to Psychology	4

AP Examination	Score	Core Requirement Satisfied
A Level Psychology	Score of B or higher fulfills core; score of A fulfills core and course equivalency for PSYCHSHU 101	Experimental Discovery (ED)
AP Psychology	Score of 4 or higher fulfills core; score of 5 fulfills core and course equivalency for PSYCHSHU 101	Experimental Discovery (ED)
IB Psychology HL (Higher Level)	Score of 6 or higher fulfills core; score of 7 fulfills core and course equivalency for PSYCHSHU 101	Experimental Discovery (ED)
AP Physics C- Mech or AP Physics C- E\&M	Score of 4 or higher	Experimental Discovery (ED)
IB Biology HL, Chemistry HL, or Physics HL	Score of 6 or higher	Experimental Discovery (ED)

A Level Biology, Chemistry, or Physics Score of B or higher
AP Physics $1 \& 2$ (must Experimental Discovery have both), Chemistry, (ED) or Biology or higher

Science, Technology, and Society Courses

Code	Title	Credits
BIOL-SHU 30	Genetics	4

BIOL-SHU 261 Genomics and Bioinformatics 4
CCST-SHU 129 Information Societies 4

CCST-SHU 130 Animals, Nature, Environment 4
CCST-SHU 133 Water Energy Food Nexus 4

CCST-SHU 141 Innovation in/of Daily Spaces 2
CCST-SHU 142 Environment Connections: Water, Waste, and 4
Wellness
CENG-SHU 352 Emerging Technologies for Smart Cities 4
ECON-SHU 232 Blockchain, Cryptocurrency, and Money 4
GCHN-SHU 216 Psychology and Modernity in China 4
GCHN-SHU 243 China and the Environment 4
HIST-SHU 205 History of Modern Medicine 4
HIST-SHU 225 The Global Space Age 4
HIST-SHU 239 New York: History of the City and its People 4
HIST-SHU 3024
HIST-SHU 305 When Science Goes Wrong 4
HIST-SHU 310 The Birth of Psychology 4
HIST-SHU 330 Popular Culture and the Scientific Revolution 4
HUMN-SHU 110 What is Science and Technology Studies 4
INTM-SHU 10J Neighborhood, Map, Phone 4
INTM-SHU 124 Emerging Technologies \& Computational Arts 4
INTM-SHU 195 After Us: Post-human Media 4
INTM-SHU 240 Solar Solutions: Considering The Sun in our Digital 4 Future
INTM-SHU 291 Solar Contraptions 2
INTM-SHU 294 History of Human Computer Interaction 4
LIT-SHU 245 Literature and Science in the Renaissance 4
MATH-SHU 5 Chance 4

NEUR-SHU 10 Free Will and the Brain 4
NEUR-SHU 265 Neural Bases of Speech and Language 4
NEUR-SHU 303 Introduction to Linguistics: The Science of Human 4

| | Language |
| :--- | :--- | :--- |
| PHIL-SHU 90 | Philosophy of Science |

PHIL-SHU 91 Philosophy of Biology 4
PHIL-SHU 130 Philosophy of Technology: Thinking Machines 4
PHIL-SHU 230 Philsophy of Physics 4
PSYC-SHU 329 Parenting and Culture 4
PSYC-SHU 344 Psychology of Human-Machine Communication 4
and Relationships
PSYC-SHU 360 Evolutionary Psychology 4
SOCS-SHU 135 Environment and Society 4
SOCS-SHU 170 Introduction to Global Health 4
SOCS-SHU 199 Global Transportation 4
SOCS-SHU 204 Environmental System Science 4

SOCS-SHU 208	Cities at Crossroads: Environmental Challenges and Opportunities in Cities	4
SOCS-SHU 248	Fraud	4
SOCS-SHU 306	Pestilence: Critical Perspectives in Global Health	4
SOCS-SHU 332	Global Mental Health	4
SOCS-SHU 333	Global Environmental Politics	4
SOCS-SHU 334	Legal Psychology	4

Biology, Chemistry, Physics, Neural Science, Computer Systems Engineering, Electrical Systems, Engineering, Math, or Honors Math.

Algorithmic Thinking

In Algorithmic Thinking (AT) courses, students acquire an understanding of the nature of computation, by studying the formal or mathematical properties of computation, by applying the concrete forms computation has taken, either historically or in the present, or by learning how to program. Students also will learn to critically engage with computation, by studying at least one context in which computation is embedded, whether historical, social, political, philosophical, mathematical or creative.

AT courses cover a wide range of disciplinary and interdisciplinary approaches; the AT course may be taken at any point in a student's undergraduate experience.

The relevant exam scores which may be used to fulfill the Core Curriculum Algorithmic Thinking requirement are listed below. No corresponding credit is awarded.

Algorithmic Thinking Courses \& Relevant Exams

Code	Title	Credits
BUSF-SHU 210	Business Analytics	4
CHEM-SHU 752	Computational Chemistry	4
CSCI-SHU 11	Introduction to Computer Programming	4
CSCI-SHU 101	Introduction to Computer and Data Science	4
HUMN-SHU 170	Algorithmic Cultures around the Globe	4
INTM-SHU 101	Interaction Lab	4
INTM-SHU 103	Creative Coding Lab	4
INTM-SHU 204	Critical Data and Visualization	4
MATH-SHU 252	Numerical Analysis	4
PHIL-SHU 70	Logic	4

AP Examination	Score	Core Requirement Satisfied
AP Computer Science	Score of 4 or higher	Algorithmic Thinking
IB HL (Higher Level) Computer Science	Score of 6 or higher	Algorithmic Thinking
NYU Shanghai		Algorithmic Thinking

Placement into
Introduction to
Computer Science

Exam Scores At-A-Glance

The following exam scores may be used to fulfill Core Curriculum requirements. No corresponding credit is awarded and test scores cannot be used to fulfill a prerequisite for an upper-level course in that area.

Core curriculum requirement can be fulfilled by these exams (though no credit is given)

AP Examination	Score	Core Requirement Satisfied
AP Calculus AB or BC	Score of 4 or higher	Mathematics
IB Mathematics HL	Score of 6 or higher	Mathematics
A Level Mathematics	Score of B or higher	Mathematics
NYU Shanghai Placement into Calculus		Mathematics

