MATHEMATICS/ELECTRICAL
 ENGINEERING (BS/BS)

Department Website (http://cas.nyu.edu/engineering/)
NYSED: 33281 HEGIS: 1701.00 CIP. 27.0101

Program Description

Since the fall of 2010, the College's dual degree program with the NYU Tandon School of Engineering, formerly known as the Polytechnic School of Engineering, has offered highly qualified and motivated students who are technically oriented the opportunity to pursue both a liberal arts program with a major in science, mathematics, or computer science and a traditional engineering program. Upon completion of this five-year program, students receive both a BS degree from the College of Arts and Science and a BS degree from the NYU Tandon School of Engineering. Students with this combination of degrees are likely to find excellent employment opportunities.

It is crucial that students begin the required dual-degree coursework in their first year.

The available dual degree combinations are as follows:

- BS in Biology/BS in Chemical and Biomolecular Engineering
- BS in Chemistry/BS in Chemical and Biomolecular Engineering
- BS in Computer Science/BS in Computer Engineering
- BS in Computer Science/BS in Electrical Engineering
- BS in Mathematics/BS in Civil Engineering
- BS in Mathematics/BS in Computer Engineering
- BS in Mathematics/BS in Electrical Engineering
- BS in Mathematics/BS in Mechanical Engineering
- BS in Physics/BS in Civil Engineering
- BS in Physics/BS in Computer Engineering
- BS in Physics/BS in Electrical Engineering
- BS in Physics/BS in Mechanical Engineering

Students in the program complete all of the CAS College Core Curriculum requirements, with the exception of the foreign language requirement, from which they are exempted. (Their required mathematics and science courses automatically satisfy the Core's Foundations of Scientific Inquiry requirements.) There is usually some flexibility concerning the semester in which a given course can be taken. Detailed programs of study for each of the degree combinations are available on the program website for reference.

Admissions

New York University's Office of Undergraduate Admissions supports the application process for all undergraduate programs at NYU. For additional information about undergraduate admissions, including application requirements, see How to Apply (https://www.nyu.edu/ admissions/undergraduate-admissions/how-to-apply.html).
Program Requirements

Course	Title	Credits
CAS Core + Tandon General Education Requirements		
EXPOS-UA 1	Writing The Essay:	4

First-Year Seminar 4
Texts and Ideas 4
Cultures and Contexts 4
Societies and the Social Sciences 4
Expressive Culture 4
Major Requirements
MATH-UA 120 Discrete Mathematics 4
MATH-UA 121 Calculus I 4
MATH-UA 122 Calculus II 4
MATH-UA 123 Calculus III 4
MATH-UA 140 Linear Algebra 4
MATH-UA 262 Ordinary Diff Equations 4
MATH-UA 233 Theory of Probability 4
MATH-UA 282 Functions of a Complex Variable 4
MATH-UA 325 Analysis 4
MATH-UA 343 Algebra 4
CSCI-UA 101 Intro to Computer Science 4
CSCI-UA 102 Data Structures 4
PHYS-UA 91 Physics I 3
PHYS-UA 93 Physics II 3
PHYS-UA $95 \quad$ Physics III 3
PHYS-UA 71 Introductory Experimental Physics I 2
PHYS-UA 72 Introductory Experimental Physics II 2
PHYS-UA 73 Intermediate Experimental Physics I 2
CS-UY 2163 INTRODUCTION TO PROGRAMMING IN C 3
CS-UY 2204 DIGITAL LOGIC AND STATE MACHINE DESIGN 4
EG-UY 1004 Introduction to Engineering and Design 4
ECE-UY 2004 FUND. OF ELECTRIC CIRCUITS 4
ECE-UY 3114 Fundamentals of Electronics I 4
ECE-UY 3054 Signals and Systems 4
ECE-UY 3604 Electromagnetic Waves 4
ECE-UY 4001 ECE Professional Development \& Presentation 1
Design Project I 3
Design Project II 3
CM- 4
UY 1003/1001
Electives
Electrical Engineering Restricted Electives (4) 12
Electrical Engineering Electives (3) 9
Electrical Engineering or Computer Science Elective 3
Humanities/Social Science Electives (2) 8
Mathematics Advanced Elective 4
Total Credits 161
Sample Plan of Study

Course	Title	Credits
1st Semester/Term		
MATH-UA 121	Calculus I	4
EXPOS-UA 1	Writing The Essay:	4
First-Year Seminar		4
PHYS-UA 91	Physics I	$\mathbf{4}$
PHYS-UA 71	Introductory Experimental Physics I	$\mathbf{2}$
	Credits	$\mathbf{1 7}$

2nd Semester/Term		
MATH-UA 122	Calculus II	4
PHYS-UA 93	Physics II	3
PHYS-UA 72	Introductory Experimental Physics II	2
CSCI-UA 101	Intro to Computer Science	4
MATH-UA 140	Linear Algebra	4
	Credits	$\mathbf{1 7}$
3rd Semester/Term	Data Structures	4
CSCI-UA 102	Calculus III	4
MATH-UA 123	Physics III	3
PHYS-UA 95	Intermediate Experimental Physics I	$\mathbf{4}$
PHYS-UA 73	Introduction to Engineering and Design	4
EG-UY 1004	Credits	$\mathbf{1 7}$

4th Semester/Term		
Texts and Ideas	Discrete Mathematics	4
MATH-UA 120	Functions of a Complex Variable	4
MATH-UA 282	Ordinary Diff Equations	4
MATH-UA 262	Credits	4
		$\mathbf{1 6}$
5th Semester/Term	Theory of Probability	4
MATH-UA 233	Analysis	4
MATH-UA 325		4
Cultures and Contexts	FUND. OF ELECTRIC CIRCUITS	4
ECE-UY 2004	Credits	$\mathbf{1 6}$

6th Semester/Term

Mathematics Advanced Elective	4	
MATH-UA 343	Algebra	4
ECE-UY 3114	Fundamentals of Electronics I	4
CS-UY 2204	DIGITAL LOGIC AND STATE MACHINE DESIGN	$\mathbf{4}$
	Credits	$\mathbf{1 6}$

7th Semester/Term		3
ECE Elective	Signals and Systems	4
ECE-UY $\mathbf{3 0 5 4}$	Electromagnetic Waves	$\mathbf{4}$
ECE-UY $\mathbf{3 6 0 4}$		3
ECE Elective	Credits	$\mathbf{1 4}$

8th Semester/Term		4
ECE Restricted Elective		3
ECE Elective	INTRODUCTION TO PROGRAMMING IN C	3
CS-UY 2163		4
Expressive Culture	General Chemistry for Engineers	
CM-UY 1003	and General Chemistry for Engineers Laboratory	$\mathbf{4}$
\& CM-UY 1001	Credits	$\mathbf{1 8}$

9th Semester/Term	
Design Project I	ECE Professional Development \& Presentation
ECE-UY 4001	1
Societies and the Social Sciences	4
ECE or CS Elective	
HU/SS Elective	
	Credits

10th Semester/Term	
Design Project II	3
ECE Restricted Elective	4
ECE Restricted Elective	4
HU/SS Elective	Credits
	Total Credits

Recommended Sequence for Majors in Mathematics

For students placing into Calculus I (MATH-UA 121):

- First semester: Calculus I (MATH-UA 121), possibly with Discrete Mathematics (MATH-UA 120)
- Second semester. Calculus II (MATH-UA 122), and Discrete Mathematics if not yet taken
- Third semester Calculus III (MATH-UA 123) and Linear Algebra or Honors Linear Algebra (MATH-UA 140 or 148)
- Fourth semester. Analysis or Honors Analysis I (MATH-UA 325 or 328)

For students placing into Calculus II (MATH-UA 122):

- First semester: Calculus II (MATH-UA 122) and Discrete Mathematics (MATH-UA 120)
- Second semester. Calculus III or Honors Calculus III (MATH-UA 123 or 129), and Linear Algebra or Honors Linear Algebra (MATH-UA 140 or 148)
- Third semester. Analysis or Honors Analysis I (MATH-UA 325 or 328)

For students placing into Calculus III (MATH-UA 123):

- First semester. Calculus III or Honors Calculus III (MATH-UA 123 or 129), possibly with Discrete Mathematics (MATH-UA 120)
- Second semester: Linear Algebra or Honors Linear Algebra (MATHUA 140 or 148), and Discrete Mathematics (MATH-UA 120) if not yet taken
- Third semester. Analysis or Honors Analysis I (MATH-UA 325 or 328)

Learning Outcomes

College of Arts and Science

1. Proficiency in the foundations of modern mathematics, including discrete mathematics, calculus, analysis, and algebra.
2. The ability to communicate mathematically, including understanding, developing, and critiquing mathematical arguments and rigorous proofs.
3. The ability to apply mathematical ideas and methods to questions and problems both within and outside of the mathematical sciences.
4. Advanced knowledge in some specific areas of mathematics, such as differential equations, geometry and topology, complex analysis, probability and statistics, number theory, or numerical analysis.
5. Experience in using appropriate technology to calculate, visualize, and model problems.

Tandon School of Engineering

Students will be able to demonstrate the following (per ABET):

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
3. An ability to communicate effectively with a range of audiences.
4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must
consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Policies

NYU Policies

University-wide policies can be found on the New York University Policy pages (https://bulletins.nyu.edu/nyu/policies/).

College of Arts and Science Policies

A full list of relevant academic policies can be found on the CAS
Academic Policies page (https://bulletins.nyu.edu/undergraduate/arts-science/academic-policies/).

