COMPUTER AND DATA SCIENCE (BA)

Department Website (http://cs.nyu.edu/)

NYSED: 40655 HEGIS: 1702.00 CIP: 27.0501

Program Description
The program in computer and data science targets students who seek comprehensive training in two bodies of knowledge: (1) computer science, an established field that advances computing, programming, and building large-scale and intelligent systems, and (2) data science, an emerging field that leverages computer science, mathematics, and domain-specific knowledge to analyze large data collections using data mining, predictive statistics, visualization, and efficient data management. The program in computer and data science trains students to use data science systems, the automated systems that effectively predict outcomes of interest and that extract insights from increasingly large data sets. This training enables students to participate in harnessing the power of data and in influencing policies that will govern the rollout of data science technologies. In addition, students gain the ability to build such systems.

Joint BS/BS Program with the NYU Tandon School of Engineering
The department offers CAS students a dual five-year BS/BS program with the NYU Tandon School of Engineering. Students in the program receive the BS degree in computer science from CAS and the BS degree in computer engineering or electrical engineering from NYU Tandon. See Programs (https://bulletins.nyu.edu/undergraduate/arts-science/#programstext) for a list of joint BS/BS programs offered at CAS.

Admissions
New York University's Office of Undergraduate Admissions supports the application process for all undergraduate programs at NYU. For additional information about undergraduate admissions, including application requirements, see How to Apply (https://www.nyu.edu/admissions/undergraduate-admissions/how-to-apply.html).

Program Requirements
The prerequisite for declaring this major is completion of (1) either CSCI-UA 101 Intro to Computer Science or CSCI-UA 102 Data Structures (depending on placement) and (2) either DS-UA 111 Data Science for Everyone or DS-UA 112 Principles of Data Science (depending on placement) with a C or better.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Year Seminar</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>EXPOS-UA 1</td>
<td>Writing The Essay:</td>
<td>4</td>
</tr>
<tr>
<td>Foreign Language</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Physical Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Life Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Texts and Ideas</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Cultures and Contexts</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Societies and the Social Sciences</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Expressive Culture 4

Major Requirements

Computer Science Requirements

CSCI-UA 2 Introduction to Computer Programming (No Prior Experience) 2
CSCI-UA 101 Intro to Computer Science 4
CSCI-UA 102 Data Structures 4
CSCI-UA 201 Computer Systems Org 4
CSCI-UA 310 Basic Algorithms 4
CSCI-UA 473 Fundamentals of Machine Learning 4
CSCI-UA 475 Predictive Analytics 4
or CSCI-UA 476 Processing Big Data for Analytics Applications
CSCI-UA 479 Data Management and Analysis 4

Data Science Requirements

DS-UA 111 Data Science for Everyone 4
DS-UA 112 Principles of Data Science 4
DS-UA 201 Causal Inference 4
DS-UA 202 Responsible Data Science 4
DS-UA 301 Advanced Topics in Data Science 4

Mathematics Requirements

MATH-UA 120 Discrete Mathematics 4
MATH-UA 121 Calculus I 4
or MATH-UA 131 Mathematics for Economics I
MATH-UA 122 Calculus II 4
or MATH-UA 132 Mathematics for Economics II
MATH-UA 140 Linear Algebra 4
or MATH-UA 148 Honors Linear Algebra
MATH-UA 235 Probability & Statistics 4

Electives

Select one Computer Science elective: 4
CSCI-UA 202 Operating Systems
CSCI-UA 475 Predictive Analytics
CSCI-UA 476 Processing Big Data for Analytics Applications
CSCI-UA 480 Special Topics: (Computer Networks)
CSCI-UA 480 Special Topics: (Introduction to Numerical Optimization)
CSCI-UA 480 Special Topics: (Introduction to Social Networking)
CSCI-UA 480 Special Topics: (Natural Language Processing)
CSCI-UA 480 Special Topics: (Parallel Computing)
Other Elective Credits 4

Total Credits 128

1
The foreign language requirement is satisfied upon successful completion through the Intermediate level of a language. This may be accomplished in fewer than 16 credits, but those credits must then be completed as elective credit.
This course does not count towards the joint major but is a required prerequisite for CSCI-UA 101 Intro to Computer Science.

Note: Students interested in this major should consult with the directors of undergraduate studies in the departments and CDS for additional information. Please note that the CAS minor requirement associated with the major in data science is waived for the computer and data science joint major, just as it is waived for a data science major pursuing a double major.

Sample Plan of Study

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester/Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSCI-UA 2</td>
<td>Introduction to Computer Programming (No Prior Experience)</td>
<td>4</td>
</tr>
<tr>
<td>MATH-UA 121</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>First-Year Seminar</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Texts and Ideas</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>2nd Semester/Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSCI-UA 101</td>
<td>Intro to Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>MATH-UA 122</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>EXPOS-UA 1</td>
<td>Writing The Essay</td>
<td>4</td>
</tr>
<tr>
<td>Cultures and Contexts</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>3rd Semester/Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS-UA 111</td>
<td>Data Science for Everyone</td>
<td>4</td>
</tr>
<tr>
<td>CSCI-UA 102</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>MATH-UA 120</td>
<td>Discrete Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>Foreign Language I</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>4th Semester/Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS-UA 112</td>
<td>Principles of Data Science</td>
<td>4</td>
</tr>
<tr>
<td>CSCI-UA 201</td>
<td>Computer Systems Org</td>
<td>4</td>
</tr>
<tr>
<td>MATH-UA 140</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>Foreign Language II</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>5th Semester/Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS-UA 201</td>
<td>Causal Inference</td>
<td>4</td>
</tr>
<tr>
<td>CSCI-UA 310</td>
<td>Basic Algorithms</td>
<td>4</td>
</tr>
<tr>
<td>Foreign Language III</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Expressive Culture</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>6th Semester/Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH-UA 235</td>
<td>Probability & Statistics</td>
<td>4</td>
</tr>
<tr>
<td>CSCI-UA 475</td>
<td>Predictive Analytics</td>
<td>4</td>
</tr>
<tr>
<td>Foreign Language IV</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Societies and the Social Sciences</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>7th Semester/Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSCI-UA 479</td>
<td>Data Management and Analysis</td>
<td>4</td>
</tr>
<tr>
<td>CSCI-UA 202</td>
<td>Operating Systems</td>
<td>4</td>
</tr>
<tr>
<td>Physical Science</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Other Elective Credits</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>8th Semester/Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS-UA 202</td>
<td>Responsible Data Science</td>
<td>4</td>
</tr>
<tr>
<td>DS-UA 301</td>
<td>Advanced Topics in Data Science</td>
<td>4</td>
</tr>
<tr>
<td>CSCI-UA 473</td>
<td>Fundamentals of Machine Learning</td>
<td>4</td>
</tr>
</tbody>
</table>

Life Science

<table>
<thead>
<tr>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Science</td>
<td>4</td>
</tr>
<tr>
<td>Total Credits</td>
<td>128</td>
</tr>
</tbody>
</table>

Learning Outcomes

Upon completion of program requirements, students are expected to have developed:

1. Fundamental theoretical and practical knowledge of the foundational areas of computer science, including algorithm design, machine learning, and programming.
2. Knowledge of current methods and tools used to analyze big data and inferences, and to explore data-driven decision making.
3. Knowledge of ethical issues regarding data science. These include the topics of fairness, diversity, and privacy.
4. The ability to build and use data science systems, the automated systems that effectively predict outcomes of interest and that extract insights from increasingly large data sets.
5. An understanding of what is going on “under the hood” of computer software in terms of the underlying computer architecture and operating systems.

Policies

Policy on Declaration of Major or Minor

Students must complete either CSCI-UA 101 or 102 (depending on placement) with a grade of C or better before they can declare the major or minor in computer science; the joint majors with economics and mathematics; and the joint minor with mathematics. To declare the joint major in computer and data science, students must first meet this prerequisite and also complete either DS-UA 111 or 112 (depending on placement) with a grade of C or better. To declare the minor in web programming and applications, students must first complete their choice of either (1) CSCI-UA 2 or 3 (depending on placement) or (2) CSCI-UA 4 with a grade of C or better. These policies apply to all NYU students, not just those matriculated in CAS.

Policies Applying to the Major

1. A grade of C or better is necessary in all courses used to fulfill major requirements; courses graded Pass/Fail do not count toward the major.
2. To enroll in Introduction to Computer Science (CSCI-UA 101), students must first fulfill the prerequisite Introduction to Computer Programming (No Prior Experience) (CSCI-UA 2) or Introduction to Computer Programming (Limited Prior Experience) (CSCI-UA 3). Alternatively, they must first present a score of 3 on the AP Computer Science exam; students with a score of 4 or 5 may also register for CSCI-UA 101 (they are encouraged but not obliged to start with CSCI-UA 102), but they will forfeit the AP credit. Finally, students may take a placement test given by the department to enter CSCI-UA 101.
3. Advanced Placement (AP) credit for Computer Science A is the equivalent of CSCI-UA 101 and counts toward the major. However, the AP exam in Computer Science Principles cannot count toward any major or minor in this department.
4. Students who score a 4 or 5 on the AP Computer Science exam are encouraged to register for Data Structures (CSCI-UA 102) but are not obliged to; they may choose to take CSCI-UA 101 before CSCI-UA 102 (and forfeit the AP credit).
5. Students will also lose AP credit if they take certain other courses in the department; this is noted in the relevant course descriptions.
6. Students are required to take CSCI-UA 101 through CSCI-UA 201 in sequence.
7. Note that Albert will automatically block: students who complete CSCI-UA 2 with a C or better from registering for CSCI-UA 3; students who complete CSCI-UA 467 with a C or better from registering for CSCI-UA 61; and students who complete CSCI-UA 479 with a C or better from registering for CSCI-UA 60.
8. CAS students (in any major or minor) are not permitted to take computer science courses in the Tandon School of Engineering.
9. Those interested in the honors program should start the major early enough to take major electives starting in the first semester of junior year.
10. Those interested in spending a semester away should work out their schedule with an adviser as early as possible.

NYU Policies
University-wide policies can be found on the New York University Policy pages (https://bulletins.nyu.edu/nyu/policies/).

College of Arts and Science Policies
A full list of relevant academic policies can be found on the CAS Academic Policies page (https://bulletins.nyu.edu/undergraduate/arts-science/academic-policies/).