DATA SCIENCE (PHD)

Department Website (http://cds.nyu.edu)

NYSED: 36834 HEGIS: 1702.00 CIP: 27.0501

Program Description

Advances in computational speed and data availability, and the development of novel data analysis methods, have birthed a new field: data science. This new field requires a new type of researcher and actor: the rigorously trained, cross-disciplinary, and ethically responsible data scientist. Launched in Fall 2017, the pioneering CDS PhD Data Science program seeks to produce such researchers who are fluent in the emerging field of data science, and to develop a native environment for their education and training. The CDS PhD Data Science program has rapidly received widespread recognition and is considered among the top and most selective data science doctoral programs in the world. It has recently been recognized by the NSF through an NRT training grant.

The CDS PhD program model rigorously trains data scientists of the future who (1) develop methodology and harness statistical tools to find answers to questions that transcend the boundaries of traditional academic disciplines; (2) clearly communicate to extract crisp questions from big, heterogeneous, uncertain data; (3) effectively translate fundamental research insights into data science practice in the sciences, medicine, industry, and government; and (4) are aware of the ethical implications of their work.

Our programmatic mission is to nurture this new generation of data scientists, by designing and building a data science environment where methodological innovations are developed and translated successfully to domain applications, both scientific and social. Our vision is that combining fundamental research on the principles of data science with translational projects involving domain experts creates a virtuous cycle: Advances in data science methodology transform the process of discovery in the sciences, and enable effective data-driven governance in the public sector. At the same time, the demands of real-world translational projects will catalyze the creation of new data science methodologies. An essential ingredient of such methodologies is that they embed ethics and responsibility by design.

These objectives will be achieved by a combination of an innovative core curriculum, a novel data assistantship mechanism that provides training of skills transfer through rotations and internships, and communication and entrepreneurship modules. Students will be exposed to a wider range of fields than in more standard PhD programs while working with our interdisciplinary faculty. In particular we are proud to offer a medical track with translational projects involving domain experts.

In short, the CDS PhD Data Science program prepares students to become leaders in data science research and prepare them for outstanding careers in academia or industry. Successful candidates are guaranteed financial support in the form of tuition and a competitive stipend in the fall and spring semesters for up to five years.* We invite you to learn more through our webpage or by contacting cds-admissions@nyu.edu.

*The Ph.D. program also offers students the opportunity to pursue their study and research with Data Science faculty based at NYU Shanghai. With this opportunity, students generally complete their coursework in New York City before moving full-time to Shanghai for their research. For more information, please visit the NYU Shanghai Ph.D. page (https://shanghai.nyu.edu/academics/graduate/data-science-phd-program/).

Admissions

All applicants to the Graduate School of Arts and Science (GSAS) are required to submit the general application requirements (https://gsas.nyu.edu/nyu-as/gsas/admissions/arc.html), which include:

- Academic Transcripts (https://gsas.nyu.edu/nyu-as/gsas/admissions/arc/academic-transcripts.html)
- Test Scores (https://gsas.nyu.edu/nyu-as/gsas/admissions/arc/test-scores.html) (if required)
- Applicant Statements (https://gsas.nyu.edu/nyu-as/gsas/admissions/arc/statements.html)
- Résumé or Curriculum Vitae
- Letters of Recommendation (https://gsas.nyu.edu/nyu-as/gsas/admissions/arc/letters-of-recommendation.html), and
- A non-refundable application fee (https://gsas.nyu.edu/admissions/arc.html#fee).

See Data Science (https://gsas.nyu.edu/admissions/arc/programs/data-science.html) for admission requirements and instructions specific to this program.

Program Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS-GA 1001</td>
<td>Introduction to Data Science</td>
<td>3</td>
</tr>
<tr>
<td>DS-GA 1002</td>
<td>Probability and Statistics for Data Science</td>
<td>3</td>
</tr>
<tr>
<td>DS-GA 1003</td>
<td>Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>DS-GA 1004</td>
<td>Big Data</td>
<td>3</td>
</tr>
<tr>
<td>DS-GA 1005</td>
<td>Inference and Representation</td>
<td>3</td>
</tr>
<tr>
<td>DS-GA 2001</td>
<td>Research Rotation (taken six times, for a total of 18 credits)</td>
<td>18</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Elective Credits</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td>72</td>
<td></td>
</tr>
</tbody>
</table>

1 This course is taken 6 times, for a total of 18 credits.

Additional Program Requirements

PhD students are also required to pass a Comprehensive Exam, the Depth Qualifying Exam (DQE), the Dissertation Proposal presentation, and the Dissertation. Students are also required to complete a teaching assignment for at least one course at the Center for Data Science by the end of the fourth year of study. All Graduate School of Arts & Science doctoral candidates must also be approved for graduation by their department for the degree to be awarded.

Sample Plan of Study

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester/Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS-GA 2003</td>
<td>Introduction to Data Science</td>
<td>3</td>
</tr>
<tr>
<td>DS-GA 1002</td>
<td>Probability and Statistics for Data Science</td>
<td>3</td>
</tr>
<tr>
<td>DS-GA 2001</td>
<td>Research Rotation</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Credits 9
2nd Semester/Term
- **DS-GA 1003**: Machine Learning 3
- **DS-GA 1004**: Big Data 3
- **DS-GA 2001**: Research Rotation 1-3

3rd Semester/Term
- **DS-GA 1005**: Inference and Representation 3
- **DS-GA 2001**: Research Rotation 1-3
- **General Elective**: 3

4th Semester/Term
- **DS-GA 2001**: Research Rotation 1-3
- **General Elective**: 3
- **General Elective**: 3

5th Semester/Term
- **DS-GA 2001**: Research Rotation 1-3
- **General Elective**: 3
- **General Elective**: 3

6th Semester/Term
- **DS-GA 2001**: Research Rotation 1-3
- **General Elective**: 3
- **General Elective**: 3

7th Semester/Term
- **General Elective**: 3
- **General Elective**: 3
- **General Elective**: 3

8th Semester/Term
- **General Elective**: 3
- **General Elective**: 3
- **General Elective**: 3

Total Credits
9

Policies

NYU Policies

University-wide policies can be found on the New York University Policy pages (https://bulletins.nyu.edu/nyu/policies/).

Graduate School of Arts and Science Policies

Academic Policies for the Graduate School of Arts and Science can be found on the Academic Policies page (https://bulletins.nyu.edu/graduate/arts-science/academic-policies/).

Following completion of the required coursework for the PhD, students are expected to maintain active status at New York University by enrolling in a research/writing course or a Maintain Matriculation (MAINT-GA 4747) course. All non-course requirements must be fulfilled prior to degree conferral, although the specific timing of completion may vary from student-to-student.

Learning Outcomes

Upon successful completion of the program, graduates will have:

1. Novel data-science methodology that transcends the boundaries of traditional academic disciplines.
2. Skills to clearly communicate their research results and their relevance to the broad data-science community.
3. The ability to effectively translate fundamental research insights into data science practice in the sciences, medicine, industry, and government.
4. An awareness of the social and ethical implications of data-driven methods, alongside tools to address and mitigate associated biases.
5. An awareness for the ethical implications of their work.